M2.(a) (i) determine area under the graph

[or determine area between line and time axis] ✓

1

(ii) as seen

line starts at very low current (within bottom half of first square)
either line continuing as (almost) horizontal straight line to end

✓ ✓

or very slight exponential decay curve ✓ which does not meet time axis ✓

OR suitable verbal comment that shows appreciation of difficulty of representing this line on the scales involved $\checkmark\checkmark\checkmark$

Use this scheme for answers which treat the information in the question literally.

3

as intended

line starts at half of original initial current ✓ slower discharging exponential (ie. smaller initial gradient)

than the original curve 🗸

correct line that intersects the original curve

(or meets it at the end) ✓

Use this scheme for answers which assume that both resistance values should be in Ω or $k\Omega$.

1/2 initial current to be marked within ±2mm of expected value.

3

(b) (i) energy stored (= $\frac{1}{2} CV^2$) = $\frac{1}{2} \times 0.12 \times 9.0^2$ \checkmark (= 4.86 (J)) 4.86 = 3.5 Δh \checkmark gives Δh = (1.39) = 1.4 (m) \checkmark to 2SF only \checkmark

SF mark is independent.

Students who make a PE in the 1st mark may still be awarded the remaining marks: treat as ECF.

(ii) energy is lost through heating of wires ${f or}$ heating the motor (as capacitor discharges) \checkmark

Allow heating of circuit or I² R heating.

energy is lost in overcoming frictional forces in the motor (or in other rotating parts) ✓

Location of energy loss (wires, or motor, etc) should be indicated in each correct answer.

[or any other well-expressed sensible reason that is valid e.g. capacitor will not drive motor when voltage becomes low ✓]

Don't allow losses due to sound, air resistance or resistance (rather than heating of) wires.

max 2

[10]

M3.(a) (i) 7.5×10^{-6} (C) or 7.5μ (C)

В1

1

(ii) Suitable scale and charge from (i) correctly plotted at 2.5 V Large square = 1 or 2 μC or With false origin then large square = 0.5 μC

В1

Only a Straight line drawn through or toward origin

C1

Line must be straight, toward origin and only drawn between 2.5 V and 1.2 V (\pm 1 / 2 square on plotted points)

Α1

3

(b) Attempted use of E= $\frac{1}{2}$ CV² Or attempted use of E= $\frac{1}{2}$ QV

C1

9.38 (
$$\mu$$
J) - 2.16 (μ J) seen or E = $\frac{1}{2} \times 3 \times 10^{-6} \times 2.5^2 - \frac{1}{2} \times 3 \times 10^{-6} \times 1.2^2$ seen or E = $\frac{1}{2} \times 3 \times 10^{-6} \times (2.5^2 - 1.2^2)$ seen

or E = $\frac{1}{2}$ × 7.5 × 10⁻⁶ × 2.5 – $\frac{1}{2}$ × 3.6 × 10⁻⁶ × 1.2 seen

C1

 7.2×10^{-6} (J) c.a.o

Α1

3

(i) Use of $V = V_0 e^{-\frac{1}{RC}}$ (c) or equivalent with

$$Q = Q_c e^{-\frac{t}{RC}}$$

$$R = -\frac{\left(\frac{1.4 \times 10^{-3}}{ln\left(\frac{1.2}{2.5}\right) \times 3 \times 10^{-8}}\right)}{\text{or } R = -\frac{\left(\frac{t}{ln\left(\frac{V_o}{V}\right) \times C}\right)}{or R} = \frac{\left(\frac{t}{ln\left(\frac{V_o}{V}\right) \times C}\right)}{or R}$$

C₁

636 or 640 (Ω)

A1

3

Current decreases (I = V / R) / describes rate of flow of (ii) electrons decreasing / rate of flow of charge decreases

M1

Charge lost more slowly so pd falls more slowly because V∝Q or Q=CV where C is constant

> **A1** MAX 2

[12]

M4.D

[1]